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Abstract
Some representations for infinite m-dimensional lattice sums of generalized
hypergeometric functions, which were deduced previously by the first-named
author, are rederived here by appealing to an alternative more direct method.
In particular, it is shown that these lattice sums are proportional to a finite sum
of Meijer’s G-functions.

AMS classification scheme numbers: 33C20, 33C10, 33C60

1. Introduction

Let q (m) denote the vector whose m components (m � 1) range over the set Z of all integers
(positive, negative, and zero). The length of an arbitrary vector α (m) is denoted by α (m) so
that, for example, if qj ∈ Z and

q (m) = (q1, q2, . . . , qm)

then

q (m) = (
q2

1 + q2
2 + · · · + q2

m

)1/2
.

Moreover, for real αj , if

α (m) = (α1, α2, . . . , αm)

then

α (m) · q (m) = α1q1 + α2q2 + · · · + αmqm

denotes the dot product of the vectors α (m) and q (m) . When m = 1, an arbitrary vector α (1)

is considered a scalar and the dot product of two such vectors denotes ordinary multiplication
of scalars.
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Recently, Miller [4] has shown by appealing to the principle of mathematical induction
that the m-dimensional lattice sum:

∑
q(m)

cos (2πα · q) pFp+1
[(

ap

) ; (bp+1
) ; −x2q2

] = 2π−m/2

� (m/2)

ω2�x2/π2∑
q(m)

∫ ∞

0
tm−1

× 0F1

[ ;
m/2; − ω2t2

]
pFp+1

[ (
ap

) ;(
bp+1

) ; − x2t2

π2

]
dt (1.1)

where x > 0, m � 1, and ω (m) = |α (m) + q (m)| . The integral in equation (1.1) converges
when ω2 < x2/π2 provided that

R (ak) > 1
4 (m − 1) and R (�) > 1

2 m (1.2a)

and when ω2 � x2/π2 provided that

R (ak) > 1
4 (m − 1) and R (�) > 1

2 m + 1 (1.2b)

where 1 � k � p and � is defined by

� :=
p+1∑
j=1

bj −
p∑

j=1

aj .

When p = 0, the latter conditional inequalities for R (ak) become superfluous and � = b1.

Furthermore, the inequalities (1.2) evidently provide necessary conditions for the convergence
of the m-dimensional lattice sum in equation (1.1); for necessary and sufficient conditions
see [4, lemma 1]. We mention, however, that the lattice sums under consideration converge
absolutely provided that R (ak) > 1

2 m and R (�) > m + 1
2 . Moreover, the integral in equation

(1.1) may be evaluated by using [6, equations (4.4) and (5.1)] and written essentially in terms
of p + 1 generalized hypergeometric functions p+1Fp

[
π2ω2/x2

]
. The result just alluded to is

given by equation (3.11) below. (See, for example, [8, p 19] for an introduction to generalized
hypergeometric functions.)

The derivation of equation (1.1) given in section 3 relies upon the following result which
we shall prove inductively in section 2.

Lemma 1. For integers m � 1

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
xm

m xm−1
m−1 · · · x1 J0

(
r

√
β2

−1 + β2
0 x1x2 · · · xm

) cos
(
rβm

√
1 − x2

m

)
√

1 − x2
m

×
cos

(
rβm−1xm

√
1 − x2

m−1

)
√

1 − x2
m−1

· · ·
cos

(
rβ1x2 · · · xm

√
1 − x2

1

)
√

1 − x2
1

dx1 dx2 · · · dxm

=
(

π

2rβ

)m/2

Jm/2 (rβ) (1.3)

where the βj

(−1 � βj � m
)

and r are complex numbers, and

β = (
β2

−1 + β2
0 + β2

1 + · · · + β2
m

)1/2
.

Note that, when m = 0, equation (1.3) reduces trivially to an identity, since there are no
integrations.



Closed-form representations for multidimensional lattice sums 2779

2. Inductive proof of equation (1.3)

When m = 1, equation (1.3) reduces to the well known result (cf., e.g., [2, p. 425] and
[7, section 2.12.21, equation (6)] or in equation (2.4) below set ν = 0, b = rβ1, and

c = r

√
β2

−1 + β2
0 ):

∫ 1

0

x1 cos

(
rβ1

√
1 − x2

1

)
√

1 − x2
1

J0

(
rx1

√
β2

−1 + β2
0

)
dx1 =

(
π

2rβ

) 1
2

J 1
2
(rβ) (2.1)

where

β = (
β2

−1 + β2
0 + β2

1

)1/2
.

Now, denoting the left-hand side of equation (1.3) by S (m), we intend to evaluate the following
multiple integral:

S(m + 1) =
∫ 1

0
xm+1

m+1

cos

(
rβm+1

√
1 − x2

m+1

)
√

1 − x2
m+1

[∫ 1

0
· · ·
∫ 1

0
xm

m · · · x1

×J0

(
rxm+1

√
β2

−1 + β2
0 x1 · · · xm

) cos
(
rxm+1βm

√
1 − x2

m

)
√

1 − x2
m

· · ·

×
cos

(
rxm+1β1x2 · · · xm

√
1 − x2

1

)
√

1 − x2
1

dx1 · · · dxm

]
dxm+1. (2.2)

Assuming that equation (1.3) is true for an arbitrary positive integer m (this is the induction
hypothesis), the integrations with respect to x1, . . . , xm yield(

π

2rxm+1α

)m/2

Jm/2(rxm+1α)

where

α = (
β2

−1 + β2
0 + β2

1 + · · · + β2
m

)1/2
.

Thus equation (2.2) gives

S(m + 1) =
( π

2rα

)m/2
∫ 1

0
x

m/2+1
m+1 Jm/2 (rαxm+1)

cos

(
rβm+1

√
1 − x2

m+1

)
√

1 − x2
m+1

dxm+1. (2.3)

The latter integral is a specialization of

∫ 1

0
tν+1Jν (ct)

cos
(
b
√

1 − t2
)

√
1 − t2

dt =
√

π

2
cν
(
b2 + c2

)− 2ν+1
4 Jν+ 1

2

(√
b2 + c2

)
(2.4)

where R (ν) > −1. Although this result is well known (cf., e.g., [7, section 2.12.21, equation
(5)]), an easy derivation is alluded to in the discussion pertaining to [4, equation (4.1)] which
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is essentially the same result as equation (2.4). Now, setting ν = m/2, c = rα, b = rβm+1 in
equation (2.4), we find from equation (2.3) that

S (m + 1) =
(

π

2rβ

) m+1
2

J m+1
2

(rβ) (2.5)

where

β = (
β2

−1 + β2
0 + β2

1 + · · · β2
m+1

)1/2

which is just equation (1.3) with m replaced by m + 1. This evidently completes the proof of
equation (1.3) by induction.

3. Derivation of equation (1.1)

Although the derivation of equation (1.1) that follows is more straightforward, conceptually
simpler, and relies on a smaller number of formal manipulations than the (explicitly) inductive
derivation given previously in [4], it is nevertheless implicitly inductive in nature, since it
depends on the (inductively proved) result given by equation (1.3). Moreover, essentially as
the two-dimensional result (i.e., [5, theorem 2]) relies on a polar coordinate transformation
and the three-dimensional result (i.e., [4, equation (3.8)]) relies on a spherical coordinate
transformation, so too the alternative derivation for the m-dimensional case will require the
polar coordinate transformation in m dimensions (see, e.g., [1, equation (9.4.1)]) given by

x1 = r cos ϕ1

x2 = r sin ϕ1 cos ϕ2

x3 = r sin ϕ1 sin ϕ2 cos ϕ3

...

xm−1 = r sin ϕ1 · · · sin ϕm−2 cos θ

xm = r sin ϕ1 · · · sin ϕm−2 sin θ

(3.1a)

where m � 2, 0 � ϕi � π, 0 � θ � 2π, and the Jacobian J of the transformation [1, p 456]
is given by

J (r, ϕ1, . . . , ϕm−2) = rm−1 sinm−2 ϕ1 · · · sin2 ϕm−3 sin ϕm−2. (3.1b)

When m = 2, the product of sines in equations (3.1) are empty, and so J (r) = r.

We employ a form of the m-dimensional Poisson summation formula. Therefore, we shall
have to evaluate the m-dimensional Fourier transform F of the generalized hypergeometric
function pFp+1

[(
ap

) ; (bp+1
) ; −t2x2

]
, where x = (x1, x2, . . . , xm) and t > 0. Thus, for real

ξj letting ξ = (ξ1, ξ2, . . . , ξm) , we find upon using equations (3.1) that

F {
pFp+1

[(
ap

) ; (bp+1
) ; −t2x2

]}
=
∫ ∞

−∞
· · ·
∫ ∞

−∞
eiξ·x

pFp+1
[(

ap

) ; (bp+1
) ; −t2x2

]
dx1 · · · dxm

=
∫ 2π

0

∫ π

0
· · ·
∫ π

0

∫ ∞

0
eir(ξ1 cos ϕ1+ξ2 sin ϕ1 cos ϕ2+···+ξm−2 sin ϕ1··· sin ϕm−3 cos ϕm−2)

×eir sin ϕ1··· sin ϕm−2(ξm−1 cos θ+ξm sin θ)rm−1
pFp+1

[(
ap

) ; (bp+1
) ; −t2r2

]
× sinm−2 ϕ1 · · · sin ϕm−2dr dϕ1 · · · dϕm−2dθ. (3.2)
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However, since

J0

(
r
√

u2 + v2
)

= 1

2π

∫ 2π

0
eir(u cos θ+v sin θ)dθ

clearly we have∫ 2π

0
eir sin ϕ1··· sin ϕm−2(ξm−1 cos θ+ξm sin θ)dθ = 2πJ0

(
r sin ϕ1 · · · sin ϕm−2

√
ξ 2
m−1 + ξ 2

m

)
.

And so we find from equation (3.2) that

F {
pFp+1

[(
ap

) ; (bp+1
) ; −t2x2

]}
= 2m−1π

∫ ∞

0
rm−1I (ξ; r) pFp+1

[(
ap

) ; (bp+1
) ; −t2r2

]
dr (3.3)

where

I (ξ; r) :=
∫ π/2

0
· · ·
∫ π/2

0
sinm−2 ϕ1 · · · sin ϕm−2J0

(
r sin ϕ1 · · · sin ϕm−2

√
ξ 2
m−1 + ξ 2

m

)
× cos (rξ1 cos ϕ1) cos (rξ2 sin ϕ1 cos ϕ2) · · ·
× cos (rξm−2 sin ϕ1 · · · sin ϕm−3 cos ϕm−2) dϕ1 · · · dϕm−2. (3.4)

Note that, when m = 2, there are no integrations with respect to ϕ1, . . . , ϕm−2, and so it is
evident that (in this case we compare equation (3.3) with [5, equation (3.6a)])

I (ξ (2) ; r) := J0

(
r

√
ξ 2

1 + ξ 2
2

)
.

In the multiple integral I (ξ; r), we make use of the transformation:

sin ϕ1 = tm−2

sin ϕ2 = tm−3

...

sin ϕm−2 = t1.

Thus equation (3.4) becomes

I (ξ; r) =
∫ 1

0
· · ·
∫ 1

0
tm−2
m−2 · · · t1 J0

(
rt1 · · · tm−2

√
ξ 2
m−1 + ξ 2

m

) cos
(
rξ1

√
1 − t2

m−2

)
√

1 − t2
m−2

×
cos

(
rξ2tm−2

√
1 − t2

m−3

)
√

1 − t2
m−3

· · ·
cos

(
rξm−2t2 · · · tm−2

√
1 − t2

1

)
√

1 − t2
1

dt1 · · · dtm−2

which, upon appealing to lemma 1 with m replaced by m − 2, gives

I (ξ; r) =
(

π

2rξ

) m−2
2

J m−2
2

(rξ)

where

ξ = (
ξ 2

1 + ξ 2
2 + · · · + ξ 2

m

)1/2
.
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Hence we may write equation (3.3) as follows:

F {
pFp+1

[(
ap

) ; (bp+1
) ; −t2x2

]}
= (2π)m/2

ξ
m−2

2

∫ ∞

0
r

m
2 J m−2

2
(ξr) pFp+1

[(
ap

) ; (bp+1
) ; −t2r2

]
dr

= 2πm/2

� (m/2)

∫ ∞

0
rm−1

0F1

[ ;
m/2; − ξ 2r2

4

]
pFp+1

[(
ap

) ; (bp+1
) ; −t2r2

]
dr.

(3.5)

Either integral in equation (3.5) converges when ξ 2 
= 4t2 provided that the inequalities
(1.2a) hold true (see [6, equations (3.4)]). Moreover, the penultimate integral is a
specialization of a generalization of the discontinuous integral of Weber and Schafheitlin
whose hypergeometric form has been evaluated in [6, equations (4.4)]. When the latter result
is applied to equation (3.5), we obtain, for t > 0,

F {
pFp+1

[(
ap

) ; (bp+1
) ; −t2x2

]} = 0
(
4t2 < ξ 2

)
(3.6a)

and

F {
pFp+1

[(
ap

) ; (bp+1
) ; −t2x2

]}
= π

m
2
�
((

bp+1
))

�
((

ap

))
(

1

tm

�
((

ap

)− m
2

)
�
((

bp+1
)− m

2

) p+1Fp

[
1 + m

2 − (
bp+1

) ;
1 + m

2 − (
ap

) ; ξ 2

4t2

]

+

(
2

ξ

)m p∑
k=1

�
(

m
2 − ak

)
�
((

ap

)∗ − ak

)
�
((

bp+1
)− ak

) (
ξ 2

4t2

)ak

×p+1Fp

[
1 + ak − (

bp+1
) ;

1 − m
2 + ak, 1 + ak − (

ap

)∗ ;
ξ 2

4t2

]) (
4t2 > ξ 2

)
(3.6b)

where, for conciseness, �
((

ap

))
:= � (a1) · · · � (ap

)
and

�
((

ap

)∗ − ak

)
:= � (a1 − ak) · · · � (ak−1 − ak) � (ak+1 − ak) · · · � (ap − ak

)
both of which reduce to unity when p = 0.

Inversion of the Fourier transform given by equations (3.6) yields the following
transformation formula for pFp+1

[−t2x2
]
:

pFp+1
[(

ap

) ; (bp+1
) ; −t2x2

] = 1(
2
√

π
)m �

((
bp+1

))
�
((

ap

))
×
(

1

tm

�
((

ap

)− m
2

)
�
((

bp+1
)− m

2

) ∫
ξ 2�4t2

e−ix·ξ
p+1Fp

[
1 + m

2 − (
bp+1

) ;
1 + m

2 − (
ap

) ; ξ 2

4t2

]
dξ

+ 2m

p∑
k=1

�
(

m
2 − ak

)
�
((

ap

)∗ − ak

)
�
((

bp+1
)− ak

) (
1

4t2

)ak
∫

ξ 2�4t2

e−ix·ξ (ξ 2
)ak− m

2

×p+1Fp

[
1 + ak − (

bp+1
) ;

1 − m
2 + ak, 1 + ak − (

ap

)∗ ;
ξ 2

4t2

]
dξ

)
(3.7)

where dξ = dξ1 · · · dξm and the inequalities (1.2a) hold true.
In equation (3.7) let x = q (m) so that x = (

q2
1 + q2

2 + · · · + q2
m

)1/2
, where qi ∈ Z,

and then replace t by x > 0. Now, multiplying both sides of the resulting equation by
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exp (2π iα (m) · q (m)) and summing over q (m), we obtain

∑
q(m)

e2π iα·q
pFp+1

[(
ap

) ; (bp+1
) ; −x2q2

] = 1(
2
√

π
)m �

((
bp+1

))
�
((

ap

))
(

�
((

ap

)− m
2

)
�
((

bp+1
)− m

2

) 1

xm

×
∫

ξ 2�4x2

∑
q(m)

ei(2πα−ξ)·q
p+1Fp

[
1 + m

2 − (
bp+1

) ;
1 + m

2 − (
ap

) ; ξ 2

4x2

]
dξ

+ 2m

p∑
k=1

�
(

m
2 − ak

)
�
((

ap

)∗ − ak

)
�
((

bp+1
)− ak

) (
1

4x2

)ak
∫

ξ 2�4x2

∑
q(m)

ei(2πα−ξ)·q (ξ 2
)ak− m

2

×p+1Fp

[
1 + ak − (

bp+1
) ;

1 − m
2 + ak, 1 + ak − (

ap

)∗ ;
ξ 2

4x2

]
dξ

)
(3.8)

where x > 0, dξ = dξ1 · · · dξm, and the order of summations and integrations have been
interchanged in each term.

For real αj , ξj and qj ∈ Z, we recall that

α (m) = (α1, α2, . . . , αm)

ξ (m) = (ξ1, ξ2, . . . ξm)

q (m) = (q1, q2, . . . , qm) .

Moreover, since (for real µ)∑
k∈Z

eiµk = 2π
∑
k∈Z

δ (µ − 2πk) (3.9a)

where δ is the delta function (see [9, p. 189, equation (17)] or [2, equation (1.6)] where an
equivalent form of equation (3.9a) is readily derived), it is easy to show that∑

q(m)

ei(2πα−ξ)·q = (2π)m
∑
q(m)

m∏
j=1

δ
(
2πωj − ξj

)
(3.9b)

where

ωj := αj − qj . (3.9c)

Now, replacing the q (m)-summations in equation (3.8) with the right member of equation
(3.9b), we have

∑
q(m)

e2π iα·q
pFp+1

[(
ap

) ; (bp+1
) ; −x2q2

] = �
((

bp+1
))

�
((

ap

))
(

�
((

ap

)− m
2

)
�
((

bp+1
)− m

2

) πm/2

xm

×
∑
q(m)

∫
ξ 2�4x2

m∏
j=1

δ
(
2πωj − ξj

)
p+1Fp

[
1 + m

2 − (
bp+1

) ;
1 + m

2 − (
ap

) ; ξ 2

4x2

]
dξ

+
(
2
√

π
)m p∑

k=1

�
(

m
2 − ak

)
�
((

ap

)∗ − ak

)
�
((

bp+1
)− ak

) (
1

4x2

)ak

×
∑
q(m)

∫
ξ 2�4x2

m∏
j=1

δ
(
2πωj − ξj

) (
ξ 2
)ak− m

2

×p+1Fp

[
1 + ak − (

bp+1
) ;

1 − m
2 + ak, 1 + ak − (

ap

)∗ ;
ξ 2

4x2

]
dξ

)
(3.10)
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where dξ = dξ1 · · · dξm and the order of summations and integrations have again been
interchanged in both terms.

It is readily seen that, for any function f (z) ,∑
q(m)

e2π iα·q f
(−x2q2

) =
∑
q(m)

cos (2πα · q) f
(−x2q2

)

since, in the latter, q may be replaced by −q. Thus, upon performing the required formal
term-by-term integrations in equation (3.10) with regard to the distributional properties of the
delta function, we immediately deduce for x > 0 that

∑
q(m)

cos (2πα · q) pFp+1
[(

ap

) ; (bp+1
) ; −x2q2

] = �
((

bp+1
))

�
((

ap

))
×
(

�
((

ap

)− m
2

)
�
((

bp+1
)− m

2

) (√
π

x

)m ω2�x2/π2∑
q(m)

p+1Fp

[
m+2

2 − (
bp+1

) ;
m+2

2 − (
ap

) ; π2ω2

x2

]

+

(
1√
π

)m p∑
k=1

�
(

m
2 − ak

)
�
((

ap

)∗ − ak

)
�
((

bp+1
)− ak

) (
π2

x2

)ak

×
ω2�x2/π2∑

q(m)

(
ω2
)ak− m

2
p+1Fp

[
1 + ak − (

bp+1
) ;

2−m
2 + ak, 1 + ak − (

ap

)∗ ;
π2ω2

x2

])
(3.11)

where, in view of equation (3.9c), ω (m) := α (m) − q (m) , and when ω2 < x2/π2 the
conditional inequalities (1.2a) hold true. If ω2 � x2/π2, the inequalities (1.2b) are required
in order for the generalized hypergeometric functions in equation (3.11) to converge at unit
argument. Equation (3.11) has already been derived by other methods in [4, equation (1.6)],
where, as previously mentioned in section 1, questions concerning the convergence of its left
member are discussed in greater detail (see [4, lemma 1]).

Finally, as has also already been mentioned earlier in section 1, the equivalence of the
right members of equations (1.1) and (3.11) can be seen by appealing to [6, equations (4.4)
and (5.1)]. This evidently completes the derivation of equation (1.1).

4. Representation in terms of Meijer’s G-function

In conclusion, we mention that, since the integral in equation (1.1) is proportional to a G-
function (see [6, equation (6.1)]) when ω2 < x2/π2, we have the elegant result:∑
q(m)

cos (2πα · q) pFp+1
[(

ap

) ; (bp+1
) ; −x2q2

]

= �
((

bp+1
))

�
((

ap

)) (√
π

x

)m ω2<x2/π2∑
q(m)

G
p+1,0
p+1,p+1

(
π2ω2

x2

∣∣∣∣
(
bp+1

)− m
2

0,
(
ap

)− m
2

)
(4.1)

where x > 0, ω = |α + q| , ω2 < x2/π2, and the conditional inequalities (1.2a) hold true.
Thus infinite m-dimensional lattice sums of generalized hypergeometric functions may be
expressed essentially as a finite sum of Meijer’s G-functions Gr,0

r,r (z) , where 0 < z < 1.

Mathai [3] has studied the latter function in [3, lemma 1, and theorems 1 and 2], where
explicit series representations and other results are given for it.
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