An alternative derivation of closed-form representations for multidimensional lattice sums of generalized hypergeometric functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 342777

(http://iopscience.iop.org/0305-4470/34/13/309)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.95
The article was downloaded on 02/06/2010 at 08:55

Please note that terms and conditions apply.

# An alternative derivation of closed-form representations for multidimensional lattice sums of generalized hypergeometric functions 

Allen R Miller ${ }^{1}$ and H M Srivastava ${ }^{2}$<br>${ }^{1} 1616$ Eighteenth Street NW, Washington, DC 20009-2525, USA<br>${ }^{2}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3P4, Canada<br>E-mail: harimsri@math.uvic.ca

Received 12 September 2000


#### Abstract

Some representations for infinite $m$-dimensional lattice sums of generalized hypergeometric functions, which were deduced previously by the first-named author, are rederived here by appealing to an alternative more direct method. In particular, it is shown that these lattice sums are proportional to a finite sum of Meijer's $G$-functions.


AMS classification scheme numbers: 33C20, 33C10, 33C60

## 1. Introduction

Let $\boldsymbol{q}(m)$ denote the vector whose $m$ components $(m \geqslant 1)$ range over the set $\mathbb{Z}$ of all integers (positive, negative, and zero). The length of an arbitrary vector $\boldsymbol{\alpha}(m)$ is denoted by $\alpha(m)$ so that, for example, if $q_{j} \in \mathbb{Z}$ and

$$
\boldsymbol{q}(m)=\left(q_{1}, q_{2}, \ldots, q_{m}\right)
$$

then

$$
q(m)=\left(q_{1}^{2}+q_{2}^{2}+\cdots+q_{m}^{2}\right)^{1 / 2}
$$

Moreover, for real $\alpha_{j}$, if

$$
\boldsymbol{\alpha}(m)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)
$$

then

$$
\boldsymbol{\alpha}(m) \cdot \boldsymbol{q}(m)=\alpha_{1} q_{1}+\alpha_{2} q_{2}+\cdots+\alpha_{m} q_{m}
$$

denotes the dot product of the vectors $\boldsymbol{\alpha}(m)$ and $\boldsymbol{q}(m)$. When $m=1$, an arbitrary vector $\boldsymbol{\alpha}$ (1) is considered a scalar and the dot product of two such vectors denotes ordinary multiplication of scalars.

Recently, Miller [4] has shown by appealing to the principle of mathematical induction that the $m$-dimensional lattice sum:

$$
\begin{gather*}
\sum_{\boldsymbol{q}(m)} \cos (2 \pi \boldsymbol{\alpha} \cdot \boldsymbol{q})_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-x^{2} q^{2}\right]=\frac{2 \pi^{-m / 2}}{\Gamma(m / 2)} \sum_{\boldsymbol{q}(m)}^{\omega^{2} \leqslant x^{2} / \pi^{2}} \int_{0}^{\infty} t^{m-1} \\
\quad \times{ }_{0} F_{1}\left[\frac{-}{m / 2 ;} ;-\omega^{2} t^{2}\right]{ }_{p} F_{p+1}\left[\begin{array}{c}
\left(a_{p}\right) ; \\
\left(b_{p+1}\right) ;
\end{array}-\frac{x^{2} t^{2}}{\pi^{2}}\right] \mathrm{d} t \tag{1.1}
\end{gather*}
$$

where $x>0, m \geqslant 1$, and $\omega(m)=|\boldsymbol{\alpha}(m)+\boldsymbol{q}(m)|$. The integral in equation (1.1) converges when $\omega^{2}<x^{2} / \pi^{2}$ provided that

$$
\begin{equation*}
\mathfrak{R}\left(a_{k}\right)>\frac{1}{4}(m-1) \quad \text { and } \quad \Re(\Delta)>\frac{1}{2} m \tag{1.2a}
\end{equation*}
$$

and when $\omega^{2} \leqslant x^{2} / \pi^{2}$ provided that

$$
\begin{equation*}
\mathfrak{R}\left(a_{k}\right)>\frac{1}{4}(m-1) \quad \text { and } \quad \Re(\Delta)>\frac{1}{2} m+1 \tag{1.2b}
\end{equation*}
$$

where $1 \leqq k \leqq p$ and $\Delta$ is defined by

$$
\Delta:=\sum_{j=1}^{p+1} b_{j}-\sum_{j=1}^{p} a_{j} .
$$

When $p=0$, the latter conditional inequalities for $\mathfrak{R}\left(a_{k}\right)$ become superfluous and $\Delta=b_{1}$. Furthermore, the inequalities (1.2) evidently provide necessary conditions for the convergence of the $m$-dimensional lattice sum in equation (1.1); for necessary and sufficient conditions see [4, lemma 1]. We mention, however, that the lattice sums under consideration converge absolutely provided that $\Re\left(a_{k}\right)>\frac{1}{2} m$ and $\Re(\Delta)>m+\frac{1}{2}$. Moreover, the integral in equation (1.1) may be evaluated by using [6, equations (4.4) and (5.1)] and written essentially in terms of $p+1$ generalized hypergeometric functions ${ }_{p+1} F_{p}\left[\pi^{2} \omega^{2} / x^{2}\right]$. The result just alluded to is given by equation (3.11) below. (See, for example, [8, p 19] for an introduction to generalized hypergeometric functions.)

The derivation of equation (1.1) given in section 3 relies upon the following result which we shall prove inductively in section 2 .

Lemma 1. For integers $m \geqslant 1$

$$
\begin{align*}
\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1} & x_{m}^{m} x_{m-1}^{m-1} \cdots x_{1} J_{0}\left(r \sqrt{\beta_{-1}^{2}+\beta_{0}^{2}} x_{1} x_{2} \cdots x_{m}\right) \frac{\cos \left(r \beta_{m} \sqrt{1-x_{m}^{2}}\right)}{\sqrt{1-x_{m}^{2}}} \\
& \times \frac{\cos \left(r \beta_{m-1} x_{m} \sqrt{1-x_{m-1}^{2}}\right)}{\sqrt{1-x_{m-1}^{2}}} \cdots \frac{\cos \left(r \beta_{1} x_{2} \cdots x_{m} \sqrt{1-x_{1}^{2}}\right)}{\sqrt{1-x_{1}^{2}}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \cdots \mathrm{~d} x_{m} \\
= & \left(\frac{\pi}{2 r \beta}\right)^{m / 2} J_{m / 2}(r \beta) \tag{1.3}
\end{align*}
$$

where the $\beta_{j}\left(-1 \leqslant \beta_{j} \leqslant m\right)$ and $r$ are complex numbers, and

$$
\beta=\left(\beta_{-1}^{2}+\beta_{0}^{2}+\beta_{1}^{2}+\cdots+\beta_{m}^{2}\right)^{1 / 2}
$$

Note that, when $m=0$, equation (1.3) reduces trivially to an identity, since there are no integrations.

## 2. Inductive proof of equation (1.3)

When $m=1$, equation (1.3) reduces to the well known result (cf., e.g., [2, p. 425] and [7, section 2.12.21, equation (6)] or in equation (2.4) below set $v=0, b=r \beta_{1}$, and $\left.c=r \sqrt{\beta_{-1}^{2}+\beta_{0}^{2}}\right)$ :
$\int_{0}^{1} \frac{x_{1} \cos \left(r \beta_{1} \sqrt{1-x_{1}^{2}}\right)}{\sqrt{1-x_{1}^{2}}} J_{0}\left(r x_{1} \sqrt{\beta_{-1}^{2}+\beta_{0}^{2}}\right) \mathrm{d} x_{1}=\left(\frac{\pi}{2 r \beta}\right)^{\frac{1}{2}} J_{\frac{1}{2}}(r \beta)$
where

$$
\beta=\left(\beta_{-1}^{2}+\beta_{0}^{2}+\beta_{1}^{2}\right)^{1 / 2}
$$

Now, denoting the left-hand side of equation (1.3) by $S(m)$, we intend to evaluate the following multiple integral:

$$
\begin{align*}
S(m+1)= & \int_{0}^{1}
\end{align*} x_{m+1}^{m+1} \frac{\cos \left(r \beta_{m+1} \sqrt{1-x_{m+1}^{2}}\right)}{\sqrt{1-x_{m+1}^{2}}}\left[\int_{0}^{1} \cdots \int_{0}^{1} x_{m}^{m} \cdots x_{1} .\right.
$$

Assuming that equation (1.3) is true for an arbitrary positive integer $m$ (this is the induction hypothesis), the integrations with respect to $x_{1}, \ldots, x_{m}$ yield

$$
\left(\frac{\pi}{2 r x_{m+1} \alpha}\right)^{m / 2} J_{m / 2}\left(r x_{m+1} \alpha\right)
$$

where

$$
\alpha=\left(\beta_{-1}^{2}+\beta_{0}^{2}+\beta_{1}^{2}+\cdots+\beta_{m}^{2}\right)^{1 / 2}
$$

Thus equation (2.2) gives
$S(m+1)=\left(\frac{\pi}{2 r \alpha}\right)^{m / 2} \int_{0}^{1} x_{m+1}^{m / 2+1} J_{m / 2}\left(r \alpha x_{m+1}\right) \frac{\cos \left(r \beta_{m+1} \sqrt{1-x_{m+1}^{2}}\right)}{\sqrt{1-x_{m+1}^{2}}} \mathrm{~d} x_{m+1}$.
The latter integral is a specialization of
$\int_{0}^{1} t^{\nu+1} J_{v}(c t) \frac{\cos \left(b \sqrt{1-t^{2}}\right)}{\sqrt{1-t^{2}}} \mathrm{~d} t=\sqrt{\frac{\pi}{2}} c^{\nu}\left(b^{2}+c^{2}\right)^{-\frac{2 v+1}{4}} J_{v+\frac{1}{2}}\left(\sqrt{b^{2}+c^{2}}\right)$
where $\mathfrak{R}(\nu)>-1$. Although this result is well known (cf., e.g., [7, section 2.12 .21 , equation (5)]), an easy derivation is alluded to in the discussion pertaining to [4, equation (4.1)] which
is essentially the same result as equation (2.4). Now, setting $v=m / 2, c=r \alpha, b=r \beta_{m+1}$ in equation (2.4), we find from equation (2.3) that

$$
\begin{equation*}
S(m+1)=\left(\frac{\pi}{2 r \beta}\right)^{\frac{m+1}{2}} J_{\frac{m+1}{2}}(r \beta) \tag{2.5}
\end{equation*}
$$

where

$$
\beta=\left(\beta_{-1}^{2}+\beta_{0}^{2}+\beta_{1}^{2}+\cdots \beta_{m+1}^{2}\right)^{1 / 2}
$$

which is just equation (1.3) with $m$ replaced by $m+1$. This evidently completes the proof of equation (1.3) by induction.

## 3. Derivation of equation (1.1)

Although the derivation of equation (1.1) that follows is more straightforward, conceptually simpler, and relies on a smaller number of formal manipulations than the (explicitly) inductive derivation given previously in [4], it is nevertheless implicitly inductive in nature, since it depends on the (inductively proved) result given by equation (1.3). Moreover, essentially as the two-dimensional result (i.e., [5, theorem 2]) relies on a polar coordinate transformation and the three-dimensional result (i.e., [4, equation (3.8)]) relies on a spherical coordinate transformation, so too the alternative derivation for the $m$-dimensional case will require the polar coordinate transformation in $m$ dimensions (see, e.g., [1, equation (9.4.1)]) given by

$$
\begin{align*}
& x_{1}=r \cos \varphi_{1} \\
& x_{2}=r \sin \varphi_{1} \cos \varphi_{2} \\
& x_{3}=r \sin \varphi_{1} \sin \varphi_{2} \cos \varphi_{3} \\
& \vdots  \tag{3.1a}\\
& x_{m-1}=r \sin \varphi_{1} \cdots \sin \varphi_{m-2} \cos \theta \\
& x_{m}=r \sin \varphi_{1} \cdots \sin \varphi_{m-2} \sin \theta
\end{align*}
$$

where $m \geqslant 2,0 \leqslant \varphi_{i} \leqslant \pi, 0 \leqslant \theta \leqslant 2 \pi$, and the Jacobian $J$ of the transformation [1, p 456] is given by

$$
\begin{equation*}
J\left(r, \varphi_{1}, \ldots, \varphi_{m-2}\right)=r^{m-1} \sin ^{m-2} \varphi_{1} \cdots \sin ^{2} \varphi_{m-3} \sin \varphi_{m-2} \tag{3.1b}
\end{equation*}
$$

When $m=2$, the product of sines in equations (3.1) are empty, and so $J(r)=r$.
We employ a form of the $m$-dimensional Poisson summation formula. Therefore, we shall have to evaluate the $m$-dimensional Fourier transform $\mathcal{F}$ of the generalized hypergeometric function ${ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2} x^{2}\right]$, where $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ and $t>0$. Thus, for real $\xi_{j}$ letting $\boldsymbol{\xi}=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right)$, we find upon using equations (3.1) that

$$
\begin{align*}
& \mathcal{F}\left\{{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2} x^{2}\right]\right\} \\
&= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} \xi \cdot x}{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2} x^{2}\right] \mathrm{d} x_{1} \cdots \mathrm{~d} x_{m} \\
&= \int_{0}^{2 \pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \int_{0}^{\infty} \mathrm{e}^{\mathrm{i} r\left(\xi_{1} \cos \varphi_{1}+\xi_{2} \sin \varphi_{1} \cos \varphi_{2}+\cdots+\xi_{m-2} \sin \varphi_{1} \cdots \sin \varphi_{m-3} \cos \varphi_{m-2}\right)} \\
& \times \mathrm{e}^{\mathrm{i} r \sin \varphi_{1} \cdots \sin \varphi_{m-2}\left(\xi_{m-1} \cos \theta+\xi_{m} \sin \theta\right)} r^{m-1}{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2} r^{2}\right] \\
& \times \sin ^{m-2} \varphi_{1} \cdots \sin \varphi_{m-2} \mathrm{~d} r \mathrm{~d} \varphi_{1} \cdots \mathrm{~d} \varphi_{m-2} \mathrm{~d} \theta . \tag{3.2}
\end{align*}
$$

However, since

$$
J_{0}\left(r \sqrt{u^{2}+v^{2}}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i} r(u \cos \theta+v \sin \theta)} \mathrm{d} \theta
$$

clearly we have
$\int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i} r \sin \varphi_{1} \cdots \sin \varphi_{m-2}\left(\xi_{m-1} \cos \theta+\xi_{m} \sin \theta\right)} \mathrm{d} \theta=2 \pi J_{0}\left(r \sin \varphi_{1} \cdots \sin \varphi_{m-2} \sqrt{\xi_{m-1}^{2}+\xi_{m}^{2}}\right)$.
And so we find from equation (3.2) that

$$
\begin{align*}
& \mathcal{F}\left\{{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2} x^{2}\right]\right\} \\
& =2^{m-1} \pi \int_{0}^{\infty} r^{m-1} I(\xi ; r)_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2} r^{2}\right] \mathrm{d} r \tag{3.3}
\end{align*}
$$

where

$$
\begin{align*}
I(\xi ; r):=\int_{0}^{\pi / 2} & \cdots \int_{0}^{\pi / 2} \sin ^{m-2} \varphi_{1} \cdots \sin \varphi_{m-2} J_{0}\left(r \sin \varphi_{1} \cdots \sin \varphi_{m-2} \sqrt{\xi_{m-1}^{2}+\xi_{m}^{2}}\right) \\
& \times \cos \left(r \xi_{1} \cos \varphi_{1}\right) \cos \left(r \xi_{2} \sin \varphi_{1} \cos \varphi_{2}\right) \cdots \\
& \times \cos \left(r \xi_{m-2} \sin \varphi_{1} \cdots \sin \varphi_{m-3} \cos \varphi_{m-2}\right) \mathrm{d} \varphi_{1} \cdots \mathrm{~d} \varphi_{m-2} . \tag{3.4}
\end{align*}
$$

Note that, when $m=2$, there are no integrations with respect to $\varphi_{1}, \ldots, \varphi_{m-2}$, and so it is evident that (in this case we compare equation (3.3) with [5, equation (3.6a)])

$$
I(\boldsymbol{\xi}(2) ; r):=J_{0}\left(r \sqrt{\xi_{1}^{2}+\xi_{2}^{2}}\right) .
$$

In the multiple integral $I(\xi ; r)$, we make use of the transformation:

$$
\begin{aligned}
& \sin \varphi_{1}=t_{m-2} \\
& \sin \varphi_{2}=t_{m-3} \\
& \vdots \\
& \sin \varphi_{m-2}=t_{1}
\end{aligned}
$$

Thus equation (3.4) becomes

$$
\begin{aligned}
I(\xi ; r)= & \int_{0}^{1} \cdots \int_{0}^{1} t_{m-2}^{m-2} \cdots t_{1} J_{0}\left(r t_{1} \cdots t_{m-2} \sqrt{\xi_{m-1}^{2}+\xi_{m}^{2}}\right) \frac{\cos \left(r \xi_{1} \sqrt{1-t_{m-2}^{2}}\right)}{\sqrt{1-t_{m-2}^{2}}} \\
& \times \frac{\cos \left(r \xi_{2} t_{m-2} \sqrt{1-t_{m-3}^{2}}\right)}{\sqrt{1-t_{m-3}^{2}}} \cdots \frac{\cos \left(r \xi_{m-2} t_{2} \cdots t_{m-2} \sqrt{1-t_{1}^{2}}\right)}{\sqrt{1-t_{1}^{2}}} \mathrm{~d} t_{1} \cdots \mathrm{~d} t_{m-2}
\end{aligned}
$$

which, upon appealing to lemma 1 with $m$ replaced by $m-2$, gives

$$
I(\xi ; r)=\left(\frac{\pi}{2 r \xi}\right)^{\frac{m-2}{2}} J_{\frac{m-2}{2}}(r \xi)
$$

where

$$
\xi=\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{m}^{2}\right)^{1 / 2}
$$

Hence we may write equation (3.3) as follows:

$$
\begin{align*}
\mathcal{F}\left\{{ }_{p} F_{p+1}\right. & {\left.\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2} x^{2}\right]\right\} } \\
& =\frac{(2 \pi)^{m / 2}}{\xi^{\frac{m-2}{2}}} \int_{0}^{\infty} r^{\frac{m}{2}} J_{\frac{m-2}{2}}(\xi r)_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2} r^{2}\right] \mathrm{d} r \\
& =\frac{2 \pi^{m / 2}}{\Gamma(m / 2)} \int_{0}^{\infty} r^{m-1}{ }_{0} F_{1}\left[\frac{}{m / 2} ;-\frac{\xi^{2} r^{2}}{4}\right]{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2} r^{2}\right] \mathrm{d} r . \tag{3.5}
\end{align*}
$$

Either integral in equation (3.5) converges when $\xi^{2} \neq 4 t^{2}$ provided that the inequalities (1.2a) hold true (see [6, equations (3.4)]). Moreover, the penultimate integral is a specialization of a generalization of the discontinuous integral of Weber and Schafheitlin whose hypergeometric form has been evaluated in [6, equations (4.4)]. When the latter result is applied to equation (3.5), we obtain, for $t>0$,

$$
\begin{equation*}
\mathcal{F}\left\{{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2} x^{2}\right]\right\}=0 \quad\left(4 t^{2}<\xi^{2}\right) \tag{3.6a}
\end{equation*}
$$

and

$$
\begin{align*}
\mathcal{F}\left\{{ } _ { p } F _ { p + 1 } \left[\left(a_{p}\right)\right.\right. & \left.\left.;\left(b_{p+1}\right) ;-t^{2} x^{2}\right]\right\} \\
= & \pi^{\frac{m}{2}} \frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)}\left(\frac{1}{t^{m}} \frac{\Gamma\left(\left(a_{p}\right)-\frac{m}{2}\right)}{\Gamma\left(\left(b_{p+1}\right)-\frac{m}{2}\right)}{ }_{p+1} F_{p}\left[\begin{array}{r}
1+\frac{m}{2}-\left(b_{p+1}\right) ; \\
1+\frac{m}{2}-\left(a_{p}\right) ;
\end{array} \quad \begin{array}{l}
\xi^{2} \\
4 t^{2}
\end{array}\right]\right. \\
& +\left(\frac{2}{\xi}\right)^{m} \sum_{k=1}^{p} \frac{\Gamma\left(\frac{m}{2}-a_{k}\right) \Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right)}{\Gamma\left(\left(b_{p+1}\right)-a_{k}\right)}\left(\frac{\xi^{2}}{4 t^{2}}\right)^{a_{k}} \\
& \left.\times{ }_{p+1} F_{p}\left[\begin{array}{r}
1+a_{k}-\left(b_{p+1}\right) ; \\
1-\frac{m}{2}+a_{k}, 1+a_{k}-\left(a_{p}\right)^{*} ;
\end{array} \frac{\xi^{2}}{4 t^{2}}\right]\right) \quad\left(4 t^{2}>\xi^{2}\right) \tag{3.6b}
\end{align*}
$$

where, for conciseness, $\Gamma\left(\left(a_{p}\right)\right):=\Gamma\left(a_{1}\right) \cdots \Gamma\left(a_{p}\right)$ and

$$
\Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right):=\Gamma\left(a_{1}-a_{k}\right) \cdots \Gamma\left(a_{k-1}-a_{k}\right) \Gamma\left(a_{k+1}-a_{k}\right) \cdots \Gamma\left(a_{p}-a_{k}\right)
$$

both of which reduce to unity when $p=0$.
Inversion of the Fourier transform given by equations (3.6) yields the following transformation formula for ${ }_{p} F_{p+1}\left[-t^{2} x^{2}\right]$ :

$$
\begin{align*}
& { }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-t^{2} x^{2}\right]=\frac{1}{(2 \sqrt{\pi})^{m}} \frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)} \\
& \times\left(\frac{1}{t^{m}} \frac{\Gamma\left(\left(a_{p}\right)-\frac{m}{2}\right)}{\Gamma\left(\left(b_{p+1}\right)-\frac{m}{2}\right)} \int_{\xi^{2} \leqslant 4 t^{2}} \mathrm{e}^{-\mathrm{i} x \cdot \xi}{ }_{p+1} F_{p}\left[\begin{array}{rr}
1+\frac{m}{2}-\left(b_{p+1}\right) ; & \xi^{2} \\
1+\frac{m}{2}-\left(a_{p}\right) ; & 4 t^{2}
\end{array}\right] \mathrm{d} \xi\right. \\
& +2^{m} \sum_{k=1}^{p} \frac{\Gamma\left(\frac{m}{2}-a_{k}\right) \Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right)}{\Gamma\left(\left(b_{p+1}\right)-a_{k}\right)}\left(\frac{1}{4 t^{2}}\right)^{a_{k}} \int_{\xi^{2} \leqslant 4 t^{2}} \mathrm{e}^{-\mathrm{i} x \cdot \xi}\left(\xi^{2}\right)^{a_{k}-\frac{m}{2}} \\
& \times{ }_{p+1} F_{p}\left[\begin{array}{rl}
1+a_{k}-\left(b_{p+1}\right) ; & \xi^{2} \\
1-\frac{m}{2}+a_{k}, 1+a_{k}-\left(a_{p}\right)^{*} ; & 4 t^{2}
\end{array} \mathrm{~d} \xi\right) \tag{3.7}
\end{align*}
$$

where $\mathrm{d} \xi=\mathrm{d} \xi_{1} \cdots \mathrm{~d} \xi_{m}$ and the inequalities $(1.2 a)$ hold true.
In equation (3.7) let $\boldsymbol{x}=\boldsymbol{q}(m)$ so that $x=\left(q_{1}^{2}+q_{2}^{2}+\cdots+q_{m}^{2}\right)^{1 / 2}$, where $q_{i} \in \mathbb{Z}$, and then replace $t$ by $x>0$. Now, multiplying both sides of the resulting equation by
$\exp (2 \pi \mathrm{i} \boldsymbol{\alpha}(m) \cdot \boldsymbol{q}(m))$ and summing over $\boldsymbol{q}(m)$, we obtain

$$
\begin{gather*}
\sum_{q(m)} \mathrm{e}^{2 \pi \mathrm{i} \cdot \cdot q}{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-x^{2} q^{2}\right]=\frac{1}{(2 \sqrt{\pi})^{m}} \frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)}\left(\frac{\Gamma\left(\left(a_{p}\right)-\frac{m}{2}\right)}{\Gamma\left(\left(b_{p+1}\right)-\frac{m}{2}\right)} \frac{1}{x^{m}}\right. \\
\quad \times \int_{\xi^{2} \leqslant 4 x^{2}} \sum_{q(m)} \mathrm{e}^{\mathrm{i}(2 \pi \alpha-\xi) \cdot q}{ }_{p+1} F_{p}\left[\begin{array}{r}
1+\frac{m}{2}-\left(b_{p+1}\right) ; \\
1+\frac{m}{2}-\left(a_{p}\right) ;
\end{array} \quad \frac{\xi^{2}}{4 x^{2}}\right] \mathrm{d} \xi \\
\\
+2^{m} \sum_{k=1}^{p} \frac{\Gamma\left(\frac{m}{2}-a_{k}\right) \Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right)}{\Gamma\left(\left(b_{p+1}\right)-a_{k}\right)}\left(\frac{1}{4 x^{2}}\right)^{a_{k}} \int_{\xi^{2} \leqslant 4 x^{2}} \sum_{q(m)} \mathrm{e}^{\mathrm{i}(2 \pi \alpha-\xi) \cdot q}\left(\xi^{2}\right)^{a_{k}-\frac{m}{2}}  \tag{3.8}\\
\left.\quad \times_{p+1} F_{p}\left[\begin{array}{r}
1+a_{k}-\left(b_{p+1}\right) ; \\
1-\frac{\xi^{2}}{2}+a_{k}, 1+a_{k}-\left(a_{p}\right)^{*} ;
\end{array}\right] \mathrm{d} \xi\right)
\end{gather*}
$$

where $x>0, \mathrm{~d} \xi=\mathrm{d} \xi_{1} \cdots \mathrm{~d} \xi_{m}$, and the order of summations and integrations have been interchanged in each term.

For real $\alpha_{j}, \xi_{j}$ and $q_{j} \in \mathbb{Z}$, we recall that

$$
\begin{aligned}
& \boldsymbol{\alpha}(m)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right) \\
& \boldsymbol{\xi}(m)=\left(\xi_{1}, \xi_{2}, \ldots \xi_{m}\right) \\
& \boldsymbol{q}(m)=\left(q_{1}, q_{2}, \ldots, q_{m}\right) .
\end{aligned}
$$

Moreover, since (for real $\mu$ )

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}} \mathrm{e}^{\mathrm{i} \mu k}=2 \pi \sum_{k \in \mathbb{Z}} \delta(\mu-2 \pi k) \tag{3.9a}
\end{equation*}
$$

where $\delta$ is the delta function (see [9, p. 189, equation (17)] or [2, equation (1.6)] where an equivalent form of equation (3.9a) is readily derived), it is easy to show that

$$
\begin{equation*}
\sum_{\boldsymbol{q}(m)} \mathrm{e}^{\mathrm{i}(2 \pi \alpha-\xi) \cdot \boldsymbol{q}}=(2 \pi)^{m} \sum_{\boldsymbol{q}(m)} \prod_{j=1}^{m} \delta\left(2 \pi \omega_{j}-\xi_{j}\right) \tag{3.9b}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{j}:=\alpha_{j}-q_{j} \tag{3.9c}
\end{equation*}
$$

Now, replacing the $\boldsymbol{q}(m)$-summations in equation (3.8) with the right member of equation (3.9b), we have

$$
\begin{align*}
& \sum_{\boldsymbol{q}(m)} \mathrm{e}^{2 \pi \mathrm{i} \alpha \cdot \boldsymbol{q}}{ }_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-x^{2} q^{2}\right]=\frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)}\left(\frac{\Gamma\left(\left(a_{p}\right)-\frac{m}{2}\right)}{\Gamma\left(\left(b_{p+1}\right)-\frac{m}{2}\right)} \frac{\pi^{m / 2}}{x^{m}}\right. \\
&\left.\times \sum_{q(m)} \int_{\xi^{2} \leqslant 4 x^{2}} \prod_{j=1}^{m} \delta\left(2 \pi \omega_{j}-\xi_{j}\right)_{p+1} F_{p}\left[\begin{array}{cc}
1+\frac{m}{2}-\left(b_{p+1}\right) ; & \xi^{2} \\
1+\frac{m}{2}-\left(a_{p}\right) ; & \left.\frac{x^{2}}{4 x^{2}}\right] \mathrm{d} \xi \\
& +(2 \sqrt{\pi})^{m} \sum_{k=1}^{p} \frac{\Gamma\left(\frac{m}{2}-a_{k}\right) \Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right)}{\Gamma\left(\left(b_{p+1}\right)-a_{k}\right)}\left(\frac{1}{4 x^{2}}\right)^{a_{k}} \\
& \times \sum_{q(m)} \int_{\xi^{2} \leqslant 4 x^{2}} \prod_{j=1}^{m} \delta\left(2 \pi \omega_{j}-\xi_{j}\right)\left(\xi^{2}\right)^{a_{k}-\frac{m}{2}} \\
& \times{ }_{p+1} F_{p}\left[1-\frac{m}{2}+a_{k}, 1+a_{k}-\left(a_{p}\right)^{*} ;\right.
\end{array} \quad \frac{\xi^{2}}{4 x^{2}}\right] \mathrm{d} \xi\right)
\end{align*}
$$

where $\mathrm{d} \xi=\mathrm{d} \xi_{1} \cdots \mathrm{~d} \xi_{m}$ and the order of summations and integrations have again been interchanged in both terms.

It is readily seen that, for any function $f(z)$,

$$
\sum_{\boldsymbol{q}(m)} \mathrm{e}^{2 \pi \mathrm{i} \alpha \cdot \boldsymbol{q}} f\left(-x^{2} q^{2}\right)=\sum_{\boldsymbol{q}(m)} \cos (2 \pi \boldsymbol{\alpha} \cdot \boldsymbol{q}) f\left(-x^{2} q^{2}\right)
$$

since, in the latter, $\boldsymbol{q}$ may be replaced by $-\boldsymbol{q}$. Thus, upon performing the required formal term-by-term integrations in equation (3.10) with regard to the distributional properties of the delta function, we immediately deduce for $x>0$ that

$$
\begin{align*}
\sum_{\boldsymbol{q}(m)} \cos (2 \pi \boldsymbol{\alpha} & \cdot \boldsymbol{q})_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-x^{2} q^{2}\right]=\frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)} \\
& \times\left(\frac{\Gamma\left(\left(a_{p}\right)-\frac{m}{2}\right)}{\Gamma\left(\left(b_{p+1}\right)-\frac{m}{2}\right)}\left(\frac{\sqrt{\pi}}{x}\right)^{m} \sum_{q(m)}^{\omega^{2} \leqslant x^{2} / \pi^{2}}{ }_{p+1} F_{p}\left[\begin{array}{c}
\frac{m+2}{2}-\left(b_{p+1}\right) ; \\
\frac{m+2}{2}-\left(a_{p}\right) ;
\end{array} \frac{\pi^{2} \omega^{2}}{x^{2}}\right]\right. \\
& +\left(\frac{1}{\sqrt{\pi}}\right)^{m} \sum_{k=1}^{p} \frac{\Gamma\left(\frac{m}{2}-a_{k}\right) \Gamma\left(\left(a_{p}\right)^{*}-a_{k}\right)}{\Gamma\left(\left(b_{p+1}\right)-a_{k}\right)}\left(\frac{\pi^{2}}{x^{2}}\right)^{a_{k}} \\
& \left.\times \sum_{\boldsymbol{q}(m)}^{\omega^{2} \leqslant x^{2} / \pi^{2}}\left(\omega^{2}\right)^{a_{k}-\frac{m}{2}}{ }_{p+1} F_{p}\left[\begin{array}{r}
\frac{2-m}{2}+a_{k}, 1+a_{k}-\left(a_{p}\right)^{*} ;
\end{array} \frac{x^{2} \omega^{2}}{x^{2}}\right]\right) \tag{3.11}
\end{align*}
$$

where, in view of equation (3.9c), $\boldsymbol{\omega}(m):=\boldsymbol{\alpha}(m)-\boldsymbol{q}(m)$, and when $\omega^{2}<x^{2} / \pi^{2}$ the conditional inequalities ( $1.2 a$ ) hold true. If $\omega^{2} \leqslant x^{2} / \pi^{2}$, the inequalities ( $1.2 b$ ) are required in order for the generalized hypergeometric functions in equation (3.11) to converge at unit argument. Equation (3.11) has already been derived by other methods in [4, equation (1.6)], where, as previously mentioned in section 1 , questions concerning the convergence of its left member are discussed in greater detail (see [4, lemma 1]).

Finally, as has also already been mentioned earlier in section 1, the equivalence of the right members of equations (1.1) and (3.11) can be seen by appealing to [6, equations (4.4) and (5.1)]. This evidently completes the derivation of equation (1.1).

## 4. Representation in terms of Meijer's $G$-function

In conclusion, we mention that, since the integral in equation (1.1) is proportional to a $G$ function (see [6, equation (6.1)]) when $\omega^{2}<x^{2} / \pi^{2}$, we have the elegant result:

$$
\begin{align*}
& \sum_{q(m)} \cos (2 \pi \boldsymbol{\alpha} \cdot \boldsymbol{q})_{p} F_{p+1}\left[\left(a_{p}\right) ;\left(b_{p+1}\right) ;-x^{2} q^{2}\right] \\
& \quad=\frac{\Gamma\left(\left(b_{p+1}\right)\right)}{\Gamma\left(\left(a_{p}\right)\right)}\left(\frac{\sqrt{\pi}}{x}\right)^{m} \sum_{q(m)}^{\omega^{2}<x^{2} / \pi^{2}} G_{p+1, p+1}^{p+1,0}\left(\frac{\pi^{2} \omega^{2}}{x^{2}} \left\lvert\, \begin{array}{c}
\left(b_{p+1}\right)-\frac{m}{2} \\
0,\left(a_{p}\right)-\frac{m}{2}
\end{array}\right.\right) \tag{4.1}
\end{align*}
$$

where $x>0, \omega=|\boldsymbol{\alpha}+\boldsymbol{q}|, \omega^{2}<x^{2} / \pi^{2}$, and the conditional inequalities (1.2a) hold true. Thus infinite $m$-dimensional lattice sums of generalized hypergeometric functions may be expressed essentially as a finite sum of Meijer's $G$-functions $G_{r, r}^{r, 0}(z)$, where $0<z<1$.

Mathai [3] has studied the latter function in [3, lemma 1, and theorems 1 and 2], where explicit series representations and other results are given for it.

## Acknowledgment

The work of the second-named author was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

## References

[1] Andrews G E, Askey R and Roy R 1999 Special Functions (Cambridge: Cambridge University Press)
[2] Grosjean C C 1996 Solving some problems of advanced analytical nature posed in the SIAM Review II Bull. Belg. Math. Soc. Simon Stevin 3 423-65
[3] Mathai A M 1984 Extensions of Wilks' integral equations and distributions of test statistics Ann. Inst. Stat. Math. 36 271-88
[4] Miller A R 2000 m-dimensional lattice sums of generalized hypergeometric functions J. Phys. A: Math. Gen. 33 6049-60
[5] Miller A R 2000 Lattice sums of generalized hypergeometric functions J. Phys. A: Math. Gen. 33 3325-34
[6] Miller A R 1997 On the Mellin transform of products of Bessel and generalized hypergeometric functions $J$. Comput. Appl. Math. 85 271-86
[7] Prudnikov A P, Brychkov Yu A and Marichev O I 1986 Integrals and Series vol 2 (New York: Gordon and Breach)
[8] Srivastava H M and Karlsson P W 1985 Multiple Gaussian Hypergeometric Series (New York: Halsted)
[9] Zemanian A H 1965 Distribution Theory and Transform Analysis (New York: Dover)

